汽车和自行车分别从A地和C地同时开出,如下图,各沿箭头方向(两方向垂直)匀速前进,汽车和自行车的速度分别是10米/秒和5米/秒,已知AC=100米。(汽车开到C地即停止)(1)经过秒后,汽车到达B处,自行车到达D处,设B、D间距离为,写出关于的函数关系式,并求出定义域。(2)经过多少时间后,汽车和自行车之间的距离最短?最短距离是多少?
张林在李明的农场附近建了一个小型工厂,由于工厂生产须占用农场的部分资源,因此李明每年向张林索赔以弥补经济损失并获得一定净收入.工厂在不赔付农场的情况下,工厂的年利润(元)与年产量(吨)满足函数关系.若工厂每生产一吨产品必须赔付农场元(以下称为赔付价格). (Ⅰ)将工厂的年利润(元)表示为年产量(吨)的函数,并求出工厂获得最大利润的年产量; (Ⅱ)若农场每年受工厂生产影响的经济损失金额(元),在工厂按照获得最大利润的产量进行生产的前提下,农场要在索赔中获得最大净收入,应向张林的工厂要求赔付价格是多少?
高三某班有两个数学课外兴趣小组,第一组有名男生,名女生,第二组有名男生,名女生.现在班主任老师要从第一组选出人,从第二组选出人,请他们在班会上和全班同学分享学习心得. (Ⅰ)求选出的人均是男生的概率; (Ⅱ)求选出的人中有男生也有女生的概率.
如图所示,平面,四边形为正方形,且,分别是线段的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求三棱锥与四棱锥的体积比.
已知函数是奇函数,并且函数的图像经过点(1,3),(1)求实数的值;(2)求函数的值域.
已知向量,,设函数,. (1)求的最小正周期与最大值; (2)在中,分别是角的对边,若的面积为,求的值.