(本小题满分13分)如图,在六面体中,平面∥平面,平面,,,∥,且,.(1)求证:平面平面;(2)求证:∥平面;(3)求三棱锥的体积.
为迎接高一新生报到,学校向高三甲、乙、丙、丁四个实验班征召志愿者.统计如下:
为了更进一步了解志愿者的来源,采用分层抽样的方法从上述四个班的志愿者中随机抽取50名参加问卷调查. (1)从参加问卷调查的50名志愿者中随机抽取两名,求这两名来自同一个班级的概率; (2)在参加问卷调查的50名志愿者中,从来自甲、丙两个班级的志愿者中随机抽取两名,用表示抽得甲班志愿者的人数,求的分布列和数学期望.
如图,在四棱锥中, ,, ,,分别为的中点. (1)证明:; (2)求直线与平面所成角的正弦值.
在中,角,,的对边分别是,,,其面积为,且. (1)求; (2)若,,求.
已知二次函数,不等式的解集是. (1)求实数和的值; (2)解不等式.
数列的通项公式是. (1)这个数列的第4项是多少? (2)150是不是这个数列的项?若是这个数列的项,它是第几项? (3)该数列从第几项开始各项都是正数?