(本小题满分12分) 已知点是椭圆上一点,是椭圆的两焦点,且满足 (Ⅰ) 求椭圆的两焦点坐标;(Ⅱ) 设点是椭圆上任意一点,如果最大时,求证、两点关于原点不对称.
(本小题满分10分,矩阵与变换)已知矩阵,矩阵,直线经矩阵 所对应的变换得到直线,直线又经矩阵所对应的变换得到直线.(1)求的值;(2)求直线的方程.
(本小题满分10分,几何证明选讲)如图,是圆的切线,切点为,是过圆心的割线且交圆于点,过作的切线交于点.求证:(1);(2).
己知,其中常数.(1)当时,求函数的极值;(2)若函数有两个零点,求证:; (3)求证:.
已知,,都是各项不为零的数列,且满足,,其中是数列的前项和, 是公差为的等差数列.(1)若数列是常数列,,,求数列的通项公式; (2)若(是不为零的常数),求证:数列是等差数列;(3)若(为常数,),,求证:对任意的,数列单调递减.
如图,在平面直角坐标系中,椭圆的左顶点为,与轴平行的直线与椭圆交于、两点,过、两点且分别与直线、垂直的直线相交于点.已知椭圆的离心率为,右焦点到右准线的距离为. (1)求椭圆的标准方程; (2)证明点在一条定直线上运动,并求出该直线的方程;(3)求面积的最大值.