因式分解(每题5分,共计30分)(1) (2)(3)(4)(5)(6)
有一张边长为 a 厘米的正方形桌面,因为实际需要,需将正方形边长增加 b 厘米,木工师傅设计了如图所示的三种方案:
小明发现这三种方案都能验证公式: a 2 + 2 ab + b 2 = ( a + b ) 2 ,
对于方案一,小明是这样验证的:
a 2 + ab + ab + b 2 = a 2 + 2 ab + b 2 = ( a + b ) 2
请你根据方案二、方案三,写出公式的验证过程.
方案二:
方案三:
如图,在 ▱ ABCD 中, AC 是对角线, BE ⊥ AC , DF ⊥ AC ,垂足分别为点 E , F ,求证: AE = CF .
如图1,直线 l : y = − 3 4 x + b 与 x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 B ,点 C 是线段 OA 上一动点 ( 0 < AC < 16 5 ) .以点 A 为圆心, AC 长为半径作 ⊙ A 交 x 轴于另一点 D ,交线段 AB 于点 E ,连接 OE 并延长交 ⊙ A 于点 F .
(1)求直线 l 的函数表达式和 tan ∠ BAO 的值;
(2)如图2,连接 CE ,当 CE = EF 时,
①求证: ΔOCE ∽ ΔOEA ;
②求点 E 的坐标;
(3)当点 C 在线段 OA 上运动时,求 OE ⋅ EF 的最大值.
若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知 ΔABC 是比例三角形, AB = 2 , BC = 3 ,请直接写出所有满足条件的 AC 的长;
(2)如图1,在四边形 ABCD 中, AD / / BC ,对角线 BD 平分 ∠ ABC , ∠ BAC = ∠ ADC .求证: ΔABC 是比例三角形.
(3)如图2,在(2)的条件下,当 ∠ ADC = 90 ° 时,求 BD AC 的值.
某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
(1)求甲、乙两种商品的每件进价;
(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?