(本大题满分14分)已知数列和满足:,,,其中为实数,为正整数.(Ⅰ)对任意实数,证明:数列不是等比数列;(Ⅱ)证明:当时,数列是等比数列;(Ⅲ)设(为实常数), 为数列的前项和.是否存在实数,使得对任意正整数,都有?若存在,求的取值范围;若不存在,说明理由.
已知椭圆的短半轴长为,动点在直线(为半焦距)上.(1)求椭圆的标准方程;(2)求以为直径且被直线截得的弦长为的圆的方程;(3)设是椭圆的右焦点,过点作的垂线与以为直径的圆交于点,求证:线段的长为定值,并求出这个定值.
(本小题满分12分)如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点.(1)求证:平面;(2)求证:平面;(3)设,求三棱锥的体积.
设数列的前项和为,且,其中是不为零的常数.(1)证明:数列是等比数列;(2)当时,数列满足,,求数列的通项公式.
为了解某市的交通状况,现对其6条道路进行评估,得分分别为:5,6,7,8,9,10.规定评估的平均得分与全市的总体交通状况等级如下表:
(1)求本次评估的平均得分,并参照上表估计该市的总体交通状况等级;(2)用简单随机抽样方法从这条道路中抽取条,它们的得分组成一个样本,求该样本的平均数与总体的平均数之差的绝对值不超过的概率.
已知函数.(1)求函数的单调增区间;(2)在中,分别是角的对边,且,求的面积.