(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)设直线与曲线相交于,两点,求M,N两点间的距离.
如图,点A为圆外一点,过点A作圆的两条切线,切点分别为B,C,ADE是圆的一条割线,连接CD, BD, BE, CE。(Ⅰ)求证:BE·CD = BD·CE(Ⅱ)延长CD,交AB于F,若CE∥AB,证明:F为线段AB的中点
已知函数,.(Ⅰ)求证:;(Ⅱ)当0≤x≤1时,若f(x) ≥ g(x)恒成立,求a的取值范围.
已知抛物线y2 =" 2px" (p > 0)的交点为F,过引直线l交此抛物线于A,B两点.(Ⅰ)若直线AF的斜率为2,求直线BF的斜率;(Ⅱ)若p=2,点M在抛物线上,且,求t的取值范围.
甲乙两名工人生产的零件尺寸记成如图所示的茎叶图, 已知零件尺寸在区间[165,180]内的为合格品.(单位:mm) (Ⅰ)求甲生产的零件尺寸的平均,乙生产的零件尺寸的中位数;(Ⅱ)在乙生产的合格零件中任取2件,求至少有一件零件尺寸在中位数以上的概率.
已知正三棱柱ABC –A1B1C1中,AB = 2,AA1 =.点F,E分别是边A1C1和侧棱BB1的中点.(Ⅰ)证明:AC⊥平面BEF;(Ⅱ)三棱锥F-AEC的体积.