如图,在Rt△ABC中,∠ACB=90º,AB=10,AC=6,点E、F分别是边AC、BC上的动点,过点E作ED⊥AB于点D,过点F作FG⊥AB于点G,DG的长始终为2. (1)当AD=3时,求DE的长; (2)当点E、F在边AC、BC上移动时,设,, 求关于的函数解析式,并写出函数的定义域; (3)在点E、F移动过程中,△AED与△CEF能否相似, 若能,求AD的长;若不能,请说明理由.
解不等式组:
计算: 已知a>0>b,求的值
如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A.B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上.求∠ACB的大小写出A,B两点的坐标由圆与抛物线的对称性可知抛物线的顶点P的坐标为(1,3),求出抛物线的解析式;在该抛物线上是否存在一点D点,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
如图9,△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D点,E为BC的中点,连接ED并延长交BA延长线于F点.求证:直线DE是⊙O的切线若AB=,AD=1,求线段AF的长当D为EF的中点时,试探究线段AB与BC之间的数量关系
一个手机经销商计划购进某品牌的A型、B型、C型手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部、三款手机的进价和预售价如下表:手机型号 A型 B型 C型进价(单位:元/部) 900 1200 1100 预售价(单位:元/部) 1200 1600 1300用含x的式子表示购进B、C两种型号手机的总数该经销商共有几种进货方案;哪种方案可获利最多,最多可获利多少元?