(本小题满分14分)已知向量向量向量满足(1)求证: (2)若与共线,求实数的值.
已知f(x)=.(1)求f(x)的单调区间;(2)令g(x)=ax2﹣2lnx,则g(x)=1时有两个不同的根,求a的取值范围;(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|成立,求k的取值范围.
已知椭圆C:+=1(a>b>0)的下顶点为P(0,﹣1),P到焦点的距离为.(Ⅰ)设Q是椭圆上的动点,求|PQ|的最大值;(Ⅱ)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当•=λ,且满足≤λ≤时,求△AOB面积S的取值范围.
如图,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,∠BAC=90°,AB=2,AC=6,点D在线段BB1上,且BD=,A1C∩AC1=E.(Ⅰ)求证:直线DE与平面ABC不平行;(Ⅱ)设平面ADC1与平面ABC所成的锐二面角为θ,若cosθ=,求AA1的长;(Ⅲ)在(Ⅱ)的条件下,设平面ADC1∩平面ABC=l,求直线l与DE所成的角的余弦值.
已知数列{an}的前n项和为Sn,且a1=.(1)求{an}的通项公式;(2)设bn=n(2﹣Sn),n∈N*,若bn≤λ,n∈N*恒成立,求实数λ的取值范围.(3)设Cn=,Tn是数列{Cn}的前n项和,证明≤Tn<1.
设函数f(x)=cos(2x﹣)+2cos2x,(Ⅰ)求f(x)的最大值,并写出使f(x)取最大值时x的集合;(Ⅱ)已知△ABC中,角A、B、C的对边分别为a、b、c,若f(B+C)=,b+c=2,a=1,求△ABC的面积的最大值.