(已知,如图四棱锥P—ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上,且AG=GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P—BCG的体积为.(Ⅰ)求异面直线GE与PC所成角的余弦;(Ⅱ)求点D到平面PBG的距离;(Ⅲ)若F点是棱PC上一点,且DF⊥GC,求的值.
在ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列,成等比数列,求证ABC为等边三角形.
某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量吨收取的污水处理费元,运行程序如下所示:请写出y与m的函数关系,并求排放污水150吨的污水处理费用.
已知命题p:,命题q:,若为真,为假,求实数的取值范围.
已知函数(1)求函数在点(0,f(0))处的切线方程;(2)求函数单调递增区间;(3)若∈[1,1],使得(e是自然对数的底数),求实数的取值范围.
如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为,且过点,点A、B分别是椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.(1)求椭圆C的方程;(2)求点P的坐标;(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离的最小值.