已知数列的前n项和为,且,(n=1,2,3…)数列中,,点在直线上。(Ⅰ)求数列和的通项公式;(Ⅱ)记,求满足的最大正整数n。
在长方体中,截下一个棱锥,求棱锥的体积与剩余部分的体积之比.
已知直线经过点,且斜率为.(I)求直线的方程;(Ⅱ)若直线与平行,且点P到直线的距离为3,求直线的方程.
某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价元与日销售量件之间有如下关系:
(I)确定与的一个一次函数关系式;(Ⅱ)若日销售利润为P元,根据(I)中关系写出P关于的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?
如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋融化了并流入杯中,会溢出杯子吗?请用你的计算数据说明理由。(冰、水的体积差异忽略不计)
已知集合,对于数列中.(Ⅰ)若三项数列满足,则这样的数列有多少个?(Ⅱ)若各项非零数列和新数列满足首项,(),且末项,记数列的前项和为,求的最大值.