已知函数定义域为(),设.(1)试确定的取值范围,使得函数在上为单调函数;(2)求证:;(3)求证:对于任意的,总存在,满足,并确定这样的的个数.
(本小题满分14分)已知函数.(1)当时,求函数的单调区间;(2)时,令,求在的最大值和最小值;(3)当时,函数图像上的点都在不等式组所表示的区域内,求实数a的取值范围.
(本小题满分13分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列和数学期望E(X).(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(本小题满分12分)如图所示,一根水平放置的长方体枕木的安全负荷与它的厚度d的平方和宽度a的乘积成正比,同时与它的长度的平方成反比.(1)在a>d>0的条件下,将此枕木翻转90°(即宽度变为了厚度),枕木的安全负荷会发生变化吗?变大还是变小?(2)现有一根横截面为半圆(半圆的半径为R=)的柱形木材,用它截取成横截面为长方形的枕木,其长度即为枕木规定的长度l,问横截面如何截取,可使安全负荷最大?
(本小题满分12分)观察下列等式 第一个式子 第二个式子 第三个式子 第四个式子 照此规律下去 (Ⅰ)写出第5个等式; (Ⅱ)你能做出什么一般性的猜想?请用数学归纳法证明猜想.
(本小题满分12分)已知复数(是虚数单位),函数.(1)若,求实数的值;(2)解不等式.