已知函数定义域为(),设.(1)试确定的取值范围,使得函数在上为单调函数;(2)求证:;(3)求证:对于任意的,总存在,满足,并确定这样的的个数.
如图,四棱锥中,底面为梯形,∥, ,平面,为的中点 (Ⅰ)证明: (Ⅱ)若,求二面角的余弦值
在△ABC中,角所对的边分别为,且∥ (Ⅰ)求的值 (Ⅱ)求三角函数式的取值范围
已知数列的前项和满足, (Ⅰ)求数列的前三项 (Ⅱ)设,求证:数列为等比数列,并指出的通项公式。
称满足以下两个条件的有穷数列为阶“期待数列”: ①;②. (1)若数列的通项公式是, 试判断数列是否为2014阶“期待数列”,并说明理由; (2)若等比数列为阶“期待数列”,求公比q及的通项公式; (3)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;
给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C的“伴随圆”,已知椭圆C的两个焦点分别是. (1)若椭圆C上一动点满足,求椭圆C及其“伴随圆”的方程; (2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C的“伴随圆”所得弦长为,求P点的坐标; (3)已知,是否存在a,b,使椭圆C的“伴随圆”上的点到过两点的直线的最短距离.若存在,求出a,b的值;若不存在,请说明理由.