如图,若长方形APHM,BNHP,CQHN的面积分别为7、4、6,求阴影部分的面积是多少?
一个不透明的布袋里装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球1个,蓝球2个,黄球若干个,现从中任意摸出一个球是蓝球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是蓝球的概率;
某校为了了解学生对在课间操期间实行“阳光跑操”活动的喜欢程度,抽取部分学生并让每个人按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对此进行评价,图①和图②是该校采集数据后,绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.回答下列问题:(1)此次调查的样本容量为 ;(2)条形统计图中存在的错误是 (填A、B、C、D中的一个);(3)在图2中补画条形统计图中不完整的部分;(4)若该校有600名学生,请估计该校“非常喜欢”和“比较喜欢”的学生共有多少人?
已知关于x,y的方程组的解为,求m的值.
如图,在Rt△ABC中,AC=8,AB=10,DE是中位线, 则圆心在直线AC上,且与DE、AB都相切的⊙O的半径长是 .
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作MN∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.