(本题12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求二面角A-CD-M的余弦值.
已知函数 f x = 2 3 x + 1 2 , h x = x .
(I)设函数 F ( x ) = f ( x ) - h ( x ) ,求 F ( x ) 的单调区间与极值; (Ⅱ)设 a ∈ R ,解关于 x 的方程 log 4 [ 3 2 f x - 1 - 3 4 ] = log 2 h a - x - log 2 h 4 - x ;
(Ⅲ)试比较 f 100 h 100 - ∑ k = 1 100 h k 与 1 6 的大小.
椭圆有两顶点 A - 1 , 0 、 B 1 , 0 ,过其焦点 F 0 , 1 的直线 l 与椭圆交于 C , D 两点,并与 x 轴交于点 P .直线 A C 与直线 B D 交于点 Q .
(Ⅰ)当 C D = 3 2 2 时,求直线 l 的方程;
(Ⅱ)当点 P 异于 A 、 B 两点时,求证: O P ⇀ · O Q ⇀ 为定值.
设 d 为非零实数, a n = 1 n C n 1 d + 2 C n 2 d 2 + ⋯ + n - 1 C n n - 1 d n - 1 + n C n n d n n ∈ N * .
(I) 写出 a 1 , a 2 , a 3 并判断 a n 是否为等比数列.若是,给出证明;若不是,说明理由; (II)设 b n = n d a n n ∈ N * ,求数列 b n 的前 n 项和 S n .
如图,在直三棱柱 A B C - A 1 B 1 C 1 中. ∠ B A C = 90 ° , A B = A C = A A 1 = 1 . D 是棱 C C 1 上的一 P 是 A D 的延长线与的 A 1 C 1 延长线的交点,且 P B 1 / / 平面 B D A . (I)求证: C D = C 1 D : (II)求二面角 A - A 1 D - B 的平面角的余弦值; (Ⅲ)求点 C 到平面 B 1 D P 的距离.
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为 1 2 , 1 4 ;两小时以上且不超过三小时还车的概率分别为 1 2 , 1 4 ;两人租车时间都不会超过四小时. (Ⅰ)求出甲、乙所付租车费用相同的概率; (Ⅱ)求甲、乙两人所付的租车费用之和为随机变量 ξ ,求 ξ 的分布列与数学期望 E ξ .