(本题12分)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点,将△ACD沿折起,使平面ACD⊥平面ABC,得到几何体D-ABC,如图2所示.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求二面角A-CD-M的余弦值.
(本小题满分12分) 数列的前项和记为,. (Ⅰ)求的通项公式; (Ⅱ)等差数列的各项为正,其前项和为且,又成 等比数列. (1)求的通项公式; (2)求证:当时,.
(本小题满分12分)已知函数(R). (Ⅰ)若且,求x;(Ⅱ)求函数的单调递增区间.
(本小题满分12分) 已知函数是偶函数. (Ⅰ)求的值; (Ⅱ)设,若函数与的图象有且只有一个公共点,求实数的取值范围.
(本小题满分12分)锐角中,角所对的边分别为,已知,(Ⅰ)求的值;(Ⅱ)若,,求的值.
(本小题满分14分) 现有甲,乙,丙,丁四名篮球运动员进行传球训练,由甲开始传球(即第一次传球是由甲传向乙或丙或丁),记第次传球球传回到甲的不同传球方式种数为. (1)试写出,并找出与()的关系式; (2)求数列的通项公式; (3)证明:当时, .