椭圆有两顶点 A - 1 , 0 、 B 1 , 0 ,过其焦点 F 0 , 1 的直线 l 与椭圆交于 C , D 两点,并与 x 轴交于点 P .直线 A C 与直线 B D 交于点 Q .
(Ⅰ)当 C D = 3 2 2 时,求直线 l 的方程;
(Ⅱ)当点 P 异于 A 、 B 两点时,求证: O P ⇀ · O Q ⇀ 为定值.
已知正方形ABCD的中心M(-1,0)和一边CD所在的直线方程为x+3y-5=0,求其他三边所在的直线方程.
已知函数的定义域为. (Ⅰ)若,求实数的值; (Ⅱ)若的最小值为5,求实数的值; (Ⅲ)是否存在实数,使得恒成立?若存在求出的值,若不存在请说明理由.
已知圆C过点A(1,3),B(2,2),并且直线m:平分圆C的面积. (Ⅰ)求圆C的方程; (Ⅱ)若过点D(0,1)且斜率为k的直线与圆C有两个不同的公共点M、N,若(O为原点),求k的值.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点. (Ⅰ)求证:MN平面BCC1B1; (Ⅱ)求证:平面A1BC平面A1ABB1.
已知函数. (Ⅰ)求最小正周期; (Ⅱ)求在区间上的最大值和最小值.