椭圆有两顶点 A - 1 , 0 、 B 1 , 0 ,过其焦点 F 0 , 1 的直线 l 与椭圆交于 C , D 两点,并与 x 轴交于点 P .直线 A C 与直线 B D 交于点 Q .
(Ⅰ)当 C D = 3 2 2 时,求直线 l 的方程;
(Ⅱ)当点 P 异于 A 、 B 两点时,求证: O P ⇀ · O Q ⇀ 为定值.
已知,直线, 相交于点P,交y轴于点A,交x轴于点B (1)证明:; (2)用m表示四边形OAPB的面积S,并求出S的最大值; (3)设S=" f" (m), 求的单调区间.
若 a > 0 , b > 0 且 1 a + 1 b = a b .
(I)求 a 3 + b 3 的最小值; (II)是否存在 a , b ,使得 2 a + 3 b = 6 ?并说明理由.
已知曲线 C: x2 4 + y2 9 =1 ,直线 l: x = 2 + t y = 2 - t (t为参数) (1)写出曲线 C 的参数方程,直线 l 的普通方程;
(2)过曲线 C 上任意一点 P 作与 l 夹角为30°的直线,交 l 于点A,求 P A 的最大值与最小值.
如图,四边形是的内接四边形,的延长线与的延长线交于点,且. (I)证明:; (II)设不是的直径,的中点为,且,证明:为等边三角形.
设函数 f x =alnx+ 1 - a 2 x2-bx a ≠ 1 ,曲线 y=f x 在点 1 , f 1 处的切线斜率为0 求 b ;若存在 x 0 ≥1 使得 f x 0 < a a - 1 ,求 a 的取值范围。