椭圆有两顶点 A - 1 , 0 、 B 1 , 0 ,过其焦点 F 0 , 1 的直线 l 与椭圆交于 C , D 两点,并与 x 轴交于点 P .直线 A C 与直线 B D 交于点 Q .
(Ⅰ)当 C D = 3 2 2 时,求直线 l 的方程;
(Ⅱ)当点 P 异于 A 、 B 两点时,求证: O P ⇀ · O Q ⇀ 为定值.
.(本小题满分14分)已知矩形所在平面,,为线段上一点,为线段 的中点.(1)当E为PD的中点时,求证:;(2)当时,求证:BG//平面AEC.
(本小题满分14分)已知向量与互相垂直,其中.(1)求和的值;(2)若,求的值.
“矩阵与变换和坐标系与参数方程”模块已知直线的极坐标方程为,圆的参数方程为为参数.(Ⅰ)求圆上的点到直线的距离的最小值;(Ⅱ)若过点的直线与圆交于、两点,且,求直线的斜率.
“数学史与不等式选讲”模块已知为正实数,且.(Ⅰ)证明:;(Ⅱ)求的最小值.
(本小题满分15分)已知函数,.(Ⅰ)若,且函数存在单调递减区间,求实数的取值范围;(Ⅱ)设函数的图象与函数的图象交于点、,过线段的中点作轴的垂线分别交、于点、,试判断在点处的切线与在点处的切线是否平行,并给出证明.