在平面直角坐标系中,已知圆的圆心在第二象限,半径为且与直线相切于原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为.(1)求圆的方程;(2)圆上是否存在点,使、关于直线为圆心,为椭圆右焦点)对称,若存在,请求出点的坐标;若不存在,请说明理由.
(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;(2) 求f(x)的单调区间;(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.
(本小题满分16分)已知椭圆C:+=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点.(1) 若P(-1,),PA是⊙O的切线,求椭圆C的方程;(2) 是否存在这样的椭圆C,使得是常数?如果存在,求C的离心率,如果不存在,说明理由.
(本小题满分14分)省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=+2a+,x∈,其中a是与气象有关的参数,且a∈],若取每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).(1) 令t=,x∈,求t的取值范围;(2) 省政府规定,每天的综合放射性污染指数不得超过2,试问:目前市中心的综合放射性污染指数是否超标?
(本小题满分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分别是线段A1A,BC上的点.(1) 若A1E=5,BF=10,求证:BE∥平面A1FD.(2) 若BD⊥A1F,求三棱锥A1AB1F的体积.
(本小题满分14分)已知函数f(x)=sin2x+sinxcosx-(x∈R).(1) 若x∈,求f(x)的最大值;(2) 在△ABC中,若A<B,f(A)=f(B)=,求的值.