(本小题满分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分别是线段A1A,BC上的点.(1) 若A1E=5,BF=10,求证:BE∥平面A1FD.(2) 若BD⊥A1F,求三棱锥A1AB1F的体积.
(本小题满分14分)已知抛物线的焦点以及椭圆的上、下焦点及左、右顶点均在圆上. (1)求抛物线和椭圆的标准方程; (2)过点的直线交抛物线于两不同点,交轴于点,已知,,求的值; (3)直线交椭圆于两不同点,在轴的射影分别为,,若点满足,证明:点在椭圆上.
(本小题满分14分) 已知数列的前项和,且. (1)求数列的通项公式; (2)令,是否存在,使得、、成等比数列.若存在,求出所有符合条件的值;若不存在,请说明理由.
(本小题满分14分)三棱柱的直观图及三视图(正视图和俯视图是正方形,侧视图是等腰直角三角形)如图所示,为的中点. (1)求证:平面; (2)求二面角的正切值.
(本小题满分12分) 惠州市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练都从中任意取出2个球,用完后放回. (1)设第一次训练时取到的新球个数为,求的分布列和数学期望; (2)已知第一次训练时用过的球放回后都当作旧球,求第二次训练时恰好取到个新球的概率. 参考公式:互斥事件加法公式:(事件与事件互斥). 独立事件乘法公式:(事件与事件相互独立). 条件概率公式:.
(本小题满分12分)已知函数,(其中),其部分图像如图所示. (1)求函数的解析式; (2)已知横坐标分别为、、的三点都在函数的图像上,求的值.