(本题满分16分)设为实数,且(1)求方程的解;(2)若,满足,试写出与的等量关系(至少写出两个);(3)在(2)的基础上,证明在这一关系中存在满足.
(理)函数, 定义的第阶阶梯函数,其中,的各阶梯函数图像的最高点,最低点 (1)直接写出不等式的解; (2)求证:所有的点在某条直线上. (3)求证:点到(2)中的直线的距离是一个定值.
已知直角坐标平面内点,一曲线经过点,且 (1)求曲线的方程; (2)设,若,求点的横坐标的取值范围.
关于的不等式的解集为。 (1)求实数的值; (2)若实系数一元二次方程的一个根,求.
、已知锐角中,三个内角为,向量,,‖,求的大小.
(本题18分,第(1)小题4分;第(2)小题6分;第(3)小题8分) 如图,已知椭圆:过点,上、下焦点分别为、, 向量.直线与椭圆交于两点,线段中点为. (1)求椭圆的方程; (2)求直线的方程; (3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线与区域有公共点,试求的最小值.