(本小题满分14分)已知二次函数的图象经过点、与点,设函数在和处取到极值,其中,。(1)求的二次项系数的值;(2)比较的大小(要求按从小到大排列);(3)若,且过原点存在两条互相垂直的直线与曲线均相切,求。
求下面各数列的前n项和: (1),… (2) ,…
已知an= (1)求数列{an}的前10项和S10; (2)求数列{an}的前2k项和S2k.
求下面数列的前n项和: 1,3,5,7,…
已知数列{an}的首项a1=2a+1(a是常数,且a≠-1), an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a, bn=an+n2(n≥2). (1)证明:{bn}从第2项起是以2为公比的等比数列; (2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值; (3)当a>0时,求数列{an}的最小项.
已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an.证明:数列{bn}是等比数列.