首页 / 高中数学 / 试题详细
  • 更新 2022-09-03
  • 科目 数学
  • 题型 解答题
  • 难度 较易
  • 浏览 2020

是由满足下列两个条件的函数构成的集合:①方程 有实根; ②函数的导函数满足(1)判断函数是不是集合中的元素,并说明理由;(2)若集合的元素具有以下性质:“设的定义域为,对于任意都存在使得等式成立.”试用这一性质证明:方程只有一个实数根;(3设是方程的实根,求证:对函数定义域中任意,,当,且时, .

登录免费查看答案和解析

设是由满足下列两个条件的函数构成的集合:①方程有实根;②函数