设是由满足下列两个条件的函数构成的集合:①方程 有实根; ②函数的导函数满足(1)判断函数是不是集合中的元素,并说明理由;(2)若集合的元素具有以下性质:“设的定义域为,对于任意都存在使得等式成立.”试用这一性质证明:方程只有一个实数根;(3设是方程的实根,求证:对函数定义域中任意,,当,且时, .
设函数定义在上,对于任意实数,恒有,且当时, (1)求证: 且当时, (2)求证: 在上是减函数; (3)设集合,,且, 求实数的取值范围。
某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:,其中是仪器的月产量。 (1)将利润元表示为月产量台的函数; (2)当月产量为何值时,公司所获得利润最大?最大利润是多少?(总收益=总成本+利润).
已知函数. (1)证明:不论为何实数总为增函数 (2)确定的值, 使为奇函数; (3)当为奇函数时, 求的值域.
设f(x)为定义在R上的偶函数,当时,y=x;当x>2时,y=f(x)的图像时顶点在P(3,4),且过点A.(2,2)的抛物线的一部分 (1)写出函数f(x)在上的解析式; (2)在下面的直角坐标系中直接画出函数f(x)的图像; (3)写出函数f(x)值域
计算: (1) (2)