(本小题满分12分)(1)为等差数列{an}的前n项和,,,求.(2)在等比数列中,求的范围
某重点高校数学教育专业的三位毕业生甲、乙、丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试都合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求:(1)至少有1人面试合格的概率;(2)签约人数X的分布列.
(本题满分10 分)已知函数f(x)=x3-ax2+3x.(1) 若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值和最小值. (2) 若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围;
设复数满足,且是纯虚数,求.
已知函数.(I)当时,求函数的单调区间;(II)若函数的图象在点处的切线的倾斜角为45o,问:m在什么范围取值时,对于任意的,函数在区间上总存在极值?
设椭圆C:的左、右焦点分别为F1、F2,A是椭圆C上的一点,,坐标原点O到直线AF1的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)设Q是椭圆C上的一点,过点Q的直线l 交 x轴于点,交 y轴于点M,若,求直线l 的斜率.