(本小题满分12分)如图,已知三棱柱ABC—A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是CC1、BC的中点,点P在A1B1上,且满足=λ(λ∈R).(1)证明:PN⊥AM;(2)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该最大角的正切值;(3)若平面PMN与平面ABC所成的二面角为45°,试确定点P的位置.
设椭圆的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.(1) 求椭圆方程.(2) 过点的直线与椭圆交于不同的两点,当面积最大时,求.
在一次数学考试中,第22,23,24题为选做题,规定每位考生必须且只须在其中选做一题,设5名考生选做这三题的任意一题的可能性均为,每位学生对每题的选择是相互独立的,各学生的选择相互之间没有影响.(1)求其中甲、乙两人选做同一题的概率;(2)设选做第23题的人数为,求的分布列及数学期望.
如图,四棱锥P-ABCD中,,,,,是的中点.(1)求证:;(2)求二面角的平面角的正弦值.
已知函数.(1)求的单调递增区间;(2)在中,三内角的对边分别为,已知,,.求的值.
设函数.(1)当时,求曲线在处的切线方程;(2)当时,求函数的单调区间;(3)在(2)的条件下,设函数,若对于[1,2],[0,1],使成立,求实数的取值范围.