(本小题满分12分)2011年1月,某校就如何落实“湖南省教育厅《关于停止普通高中学校组织三年级学生节假日补课的通知》”,举办了一次座谈会,共邀请50名代表参加,他们分别是家长20人,学生15人,教师15人.(1)从这50名代表中随机选出2名首先发言,问这2人是教师的概率是多少?(2)从这50名代表中随机选出3名谈假期安排,若选出3名代表是学生或家长,求恰有1人是家长的概率是多少?(3)若随机选出的2名代表是学生或家长,求其中是家长的人数为ξ的分布列和数学期望.
2014年国庆长假期间,各旅游景区人数发生“井喷”现象,给旅游区的管理提出了严峻的考验,国庆后,某旅游区管理部门对该区景点进一步改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x万元之间满足:,当x=10时,y=9.2. (1)求y=f(x)的解析式; (2)求旅游增加值y取得最大值时对应的x值.
已知向量. (1)当时,求的值; (2)求在上的值域.
设命题:函数在区间[-1,1]上单调递减;命题:使等式成立,如果命题或为真命题,且为假命题,求的取值范围.
已知函数. (1)求不等式的解集; (2)设,若存在,使,求的取值范围。 (3)若对于任意的,关于的不等式在 区间上恒成立,求实数的取值范围.
已知函数 (1)写出的单调区间; (2)设>0,求在上的最大值.