(本小题满分12分)2011年1月,某校就如何落实“湖南省教育厅《关于停止普通高中学校组织三年级学生节假日补课的通知》”,举办了一次座谈会,共邀请50名代表参加,他们分别是家长20人,学生15人,教师15人.(1)从这50名代表中随机选出2名首先发言,问这2人是教师的概率是多少?(2)从这50名代表中随机选出3名谈假期安排,若选出3名代表是学生或家长,求恰有1人是家长的概率是多少?(3)若随机选出的2名代表是学生或家长,求其中是家长的人数为ξ的分布列和数学期望.
已知直线l:y=x+,圆O:x2+y2=5,椭圆E:=1(a>b>0)的离心率e=,直线l被圆O截得的弦长与椭圆的短轴长相等. (1)求椭圆E的方程; (2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两切线的斜率之积为定值.
已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点. (1)求证:△AOB的面积为定值; (2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程; (3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆C的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
已知圆C:x2+y2+x-6y+m=0与直线l:x+2y-3=0. (1)若直线l与圆C没有公共点,求m的取值范围; (2)若直线l与圆C相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值.
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°. (1)求证:AC⊥平面BDE; (2)求二面角F-BE-D的余弦值; (3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=,M是线段B1D1的中点. (1)求证:BM∥平面D1AC; (2)求证:D1O⊥平面AB1C; (3)求二面角B-AB1-C的大小.