(本小题共12分)已知函数(其中为常量且)的图像经过点.(1)试求的值;(2)若不等式在时恒成立,求实数的取值范围.
(本小题满分12分)分别求满足下列条件的直线方程. (Ⅰ)过点,且平行于:的直线; (Ⅱ)与:垂直,且与点距离为的直线.
定义在D上的函数,如果满足;对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界。 已知函数, (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; (2)若函数在上是以3为上界函数值,求实数的取值范围; (3)若,求函数在上的上界T的取值范围。
如图,线段,所在直线是异面直线,,,,分别是线段,,,的中点. (1)求证:共面且面,面; (2)设,分别是和上任意一点,求证:被平面平分.
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元) (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。 (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元。(精确到1万元)。
已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V;(2)求该几何体的侧面积S。