选修4-1:几何证明选讲如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,直线OB交于⊙O于点E,D,连接EC,CD。(1)试判断直线AB与⊙O的位置关系,并加以证明;(2)若,⊙O的半径为3,求OA的长。
在中,A、B、C为它的三个内角,设向量且与的夹角为.(Ⅰ)求角的大小; (Ⅱ) 已知,求的值.
在 ∆ A B C 中, sin C - A = 1 , sin B = 1 3 .
(1)求 sin A 的值;
(2)设 A C = 6 ,求 ∆ A B C 的面积.
已知函数与(为常数)的图象关于直线对称,且是的一个极值点. (I)求出函数的表达式和单调区间; (II)若已知当时,不等式恒成立,求的取值范围.
设函数是在上每一点处可导的函数,若在上恒成立.回答下列问题: (I)求证:函数在上单调递增; (II)当时,证明:; (III)已知不等式在且时恒成立,求证:.
(本题12分)设函数的定义域为A,集合,(1)求;(2)若,求的取值范围。