(每小题8分,共16分)(1)计算:︱-2︱+2sin30°-(-)2+(tan45°)-1;(2)先化简,再求值:,其中a=tan60°-l.
如图,在平面直角坐标系中,点A、C分别在x轴、y轴上,四边形ABCO为矩形,AB=16,点D与点A关于y轴对称,tan∠ACB=,点E、F分别是线段AD、AC上的动点(点E不与点A、D重合),且∠CEF=∠ACB.(1)求AC的长和点D的坐标;(2)说明△AEF与△DCE相似;(3)当△EFC为等腰三角形时,求点E的坐标.
某风景管理区为提高游客到某景点的安全性,决定将到达该景点的步行台阶改善,把倾角由45°减至30°,已知原台阶坡面AB的长为米(BC所在地面为水平面)。(1)改善后的台阶坡面AD长多少米?(2)改善后的台阶会多占多长一段水平地面?(结果保留根号)
某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为.第三组的频数是12.请你回答:(1)本次活动共有 件作品参赛;(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是 度。(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?
如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠ABC=60°.求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.
我们给出如下定义:在平面直角坐标系xOy中,如果一条抛物线平移后得到的抛物线经过原抛物线的顶点,那么这条抛物线叫做原抛物线的过顶抛物线.如下图,抛物线F2都是抛物线F1的过顶抛物线,设F1的顶点为A,F2的对称轴分别交F1、F2于点D、B,点C是点A关于直线BD的对称点.(1)如图1,如果抛物线y=x2的过顶抛物线为y=ax2+bx,C(2,0),那么①a= ,b= .②如果顺次连接A、B、C、D四点,那么四边形ABCD为( )A.平行四边形 B.矩形 C.菱形 D.正方形(2)如图2,抛物线y=ax2+c的过顶抛物线为F2,B(2,c-1).求四边形ABCD的面积.(3)如果抛物线的过顶抛物线是F2,四边形ABCD的面积为,请直接写出点B的坐标.