(每小题8分,共16分)(1)计算:︱-2︱+2sin30°-(-)2+(tan45°)-1;(2)先化简,再求值:,其中a=tan60°-l.
化简求值:,取-1、0、1、2中的一个数.
(1)计算:; (2)解不等式组:.
(本小题满分13分)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线,的图像经过BC上的点D与AB交于点E,连接DE,若若E是AB的中点﹒(1)求D点的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求BF的解析式;(3)若点P(m,3m+6)也在此反比例函数的图像上(其中m >0),过p点作x轴的垂线,交x轴于点M,若线段PM上存在一点Q,使得△OQM的面积是,设Q点的纵坐标为n,求的值.
(本小题满分13分)(1)操作发现:如图①,D是等边△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF.直接写出线段AF与BD之间的数量关系.(2)类比猜想:如图②,当△ABC为以BC为斜边的等腰直角三角形,D是△ABC边BA上一动点(点D 与点B不重合),连接DC,以DC为斜边在BC上方作等腰直角△FDC,连接AF.请直接写出它们的数量关系.(3)深入探究:Ⅰ.如图③,当△ABC为以BC为底边的等腰三角形,D是△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为底边在BC上方作等腰△FDC,∠BC A=∠DCF,且∠B A C =,连接AF.线段AF与BD之间的有什么数量关系?证明你发现的结论;Ⅱ.如图④,当△ABC为任意三角形,D是△ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作△FDC∽△ABC,且,连接AF.线段AF与BD之间的有什么数量关系?直接写出你发现的结论.
(本小题满分10分)小刚和小强相约晨练跑步,小刚比小强早1分钟离开家门,3分钟后迎面遇到从家跑来的小强.两人同路并行跑了2分钟后,决定进行长跑比赛,比赛时小刚的速度始终是180米/分,小强的速度始终是220米/分.下图是两人之间的距离y(米)与小刚离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题:(1)两人相遇之前,小刚的速度是 米/分,小强的速度是 米/分;(2)求两人比赛过程中y与x之间的函数关系式;