列一元二次方程解下列应用题(每小题6分,共18分)(1)已知两个正方形的面积之和为89,周长之差为12, 求这两个正方形的边长。(2)有一人患了流感,经两轮传染后共有144人患了这种疾病,每轮传染中平均一个人传染了几人?(3)据有关部门统计,我省农作物秸秆资源巨大,但合理利用量十分有限,2009年利用率只有30℅,大部分秸秆被直接焚烧,假定我省产生的农作物秸秆总量不变,且合理利用量的增长率相同,要使2011年的利用率提高到60℅,求每年的增长率。(可能用到的数据:)
一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球. (1)共有 种可能的结果. (2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.
如图,已知梯形ABCD中,AD∥BC,AC,BD交于O,过O作AD的平行线交AB于M,交CD于N.若AD=3cm,BC=5cm,求ON.
利用适当方法解下列方程 (1)4(x-3)2=25 (2)x2-4x=0 (3)3x(x+1)=3x+3 (4)2x2+1=3x (5)x2-7x+10=0.
如图,在等边△ABC中,AB=6,AD⊥BC于点D,点P在边AB上运动,过点P作PE∥BC与边AC交于点E,连结ED,以PE、ED为邻边作□,设□与重叠部分图形的面积为,线段的长为(1)求线段的长(用含的代数式表示);(2)当四边形为菱形时,求的值;(3)直接写出与之间的函数关系式;
已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF (1)如图1当点D在线段BC上时.求证CF+CD=BC; (2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系; (3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变; ①请直接写出CF,BC,CD三条线段之间的关系; ②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.