如图,在等边△ABC中,AB=6,AD⊥BC于点D,点P在边AB上运动,过点P作PE∥BC与边AC交于点E,连结ED,以PE、ED为邻边作□,设□与重叠部分图形的面积为,线段的长为(1)求线段的长(用含的代数式表示);(2)当四边形为菱形时,求的值;(3)直接写出与之间的函数关系式;
如图,反比例函数的图像与一次函数y=kx+4的图像相交于P、Q两点,并且P点的纵坐标是6. (1)求这个一次函数的解析式 (2)求△POQ的面积.
如图,中,分别是边的中点,相交于. 求证:.
已知,求和的值。
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.
请完成下面的说明:(1)如图①所示,△ABC的外角平分线交于G,试说明∠BGC=90°-∠A. 说明:根据三角形内角和等于180°,可知∠ABC+∠ACB=180°-∠_____. 根据平角是180°,可知∠ABE+∠ACF=180°×2=360°, 所以∠EBC+∠FCB=360°-(∠ABC+∠ACB)=360°-(180°-∠_____)=180°+∠______. 根据角平分线的意义,可知∠2+∠3=(∠EBC+∠FCB)=(180°+∠_____)=90°+∠_______. 所以∠BGC=180°-(∠2+∠3)=90°-∠____. (2)如图②所示,若△ABC的内角平分线交于点I,试说明∠BIC=90°+∠A. (3)用(1),(2)的结论,你能说出∠BGC和∠BIC的关系吗?