(.宁夏,第23题,8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,.(1)求证:PB是的切线;(2)连接OP,若,且OP=8,的半径为,求BC的长.
在Rt△ABC中,∠CAB=90°,AB=AC. (1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N. ①判断线段MN、BM、CN之间有何数量关系,并证明; ②若AM=,BM=,AB=,试利用图①验证勾股定理=; (2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)
如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9. (1)求DC和AB的长; (2)证明:∠ACB=90°.
如图,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点.求证:MN⊥BD.
已知:如图,△ABC中,AB=AC,∠EAC是△ABC的外角,AD平分∠EAC 。 求证:AD∥BC
已知:如图,同一直线上有四点B、E、C、F,且AB∥DE,AC∥DF,BE=CF. 求证:AB=DE.