(本题共两小题,每小题6分,满分12分)(1)计算:.(2)解不等式组
在平面直角坐标系xOy中,二次函数的图象经过(,0)和(,0)两点.(1)求此二次函数的表达式.(2)直接写出当<x<1时,y的取值范围.(3)将一次函数 y=(1-m)x+2的图象向下平移m个单位后,与二次函数图象交点的横坐标分别是a和b,其中a<2<b,试求m的取值范围.
如图,定义:在Rt△ABC中,∠C =90°,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα=.根据上述角的余切定义,解答下列问题:(1)ctan60°= .(2)求ctan15°的值.
如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.(1)求证:DE与⊙O 相切.(2)若tanC=,DE=2,求AD的长.
学生的上学方式是初中生生活自理能力的一种反映.为此,怀柔区某初三数学老师组织本班学生,运用他们所学的统计知识,对初一学生上学的四种方式:骑车、步行、乘车、接送,进行抽样调查,并将调查的结果绘制成图(1)、图(2).请根据图中提供的信息,解答下列问题:(1)抽样调查的样本容量为________,其中步行人数占样本容量的_____%,骑车人数占样本容量的_____%.(2)请将图(1)补充完整.(3)根据抽样调查结果,你估计该校初一年级800名学生中,大约有多少名学生是由家长接送上学的?
如图,在平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,∠EFC=30°, AB=2.求CF的长.