(本小题满分10分) 某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润: 方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个; 方案二:售价不变,但发资料做广告。已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p = ; 试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!
阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数的最大值.他画图研究后发现,和时的函数值相等,于是他认为需要对进行分类讨论.他的解答过程如下:∵二次函数的对称轴为直线,∴由对称性可知,和时的函数值相等.∴若1≤m<5,则时,的最大值为2;若m≥5,则时,的最大值为.请你参考小明的思路,解答下列问题:(1)当≤x≤4时,二次函数的最大值为_______;(2)若p≤x≤2,求二次函数的最大值;(3)若t≤x≤t+2时,二次函数的最大值为31,则的值为_______.
平面直角坐标系中,原点O是正三角形ABC外接圆的圆心,点A在轴的正半轴上,△ABC的边长为6.以原点O为旋转中心将△ABC沿逆时针方向旋转角,得到△,点、、分别为点A、B、C的对应点.(1)当=60时,①请在图1中画出△;②若AB分别与、交于点D、E,则DE的长为_______; (2)如图2,当⊥AB时,分别与AB、BC交于点F、G,则点的坐标为 _____,△FBG的周长为_____,△ABC与△重叠部分的面积为_______.
如图,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)点M是弧AB的中点,CM交AB于点N,若MN MC=8,求⊙O的直径.
已知抛物线.(1)它与x轴的交点的坐标为_______;(2)在坐标系中利用描点法画出它的图象;(3)将该抛物线在轴下方的部分(不包含与轴的交点)记为G,若直线与G 只有一个公共点,则的取值范围是_______.
如图,一艘海轮位于灯塔P的南偏东45方向,距离灯塔100海里的A处,它计划沿正北方向航行,去往位于灯塔P的北偏东30方向上的B处.(1)B处距离灯塔P有多远?(2)圆形暗礁区域的圆心位于PB的延长线上,距离灯塔200海里的O处.已知圆形暗礁区域的半径为50海里,进入圆形暗礁区域就有触礁的危险.请判断若海轮到达B处是否有触礁的危险,并说明理由.