如图,设是单位圆和轴正半轴的交点,是单位圆上的两点,是坐标原点,,. (1)若,求的值;(2)设函数,求的值域.
(本小题满分12分)设a为实数,函数(Ⅰ)求f(x)的极值;(Ⅱ)当在什么范围内取值时,曲线y= f(x)与x轴仅有一个交点。
(本小题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.(Ⅰ)求恰有二人破译出密码的概率;(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.
(本小题满分12分)甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率。
(本小题满分10分)已知函数。(Ⅰ)若曲线在点处的切线方程为,求函数 的解析式;(Ⅱ)当时,讨论函数的单调性。
如图,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2M,N分别是A1B1,A1A的中点。(1)求的长度;下(2)求cos(,)的值;(3)求证:A1B⊥C1M。