某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为3200元,面粉的保管等其它费用为平均每吨每天3元,购买面粉每次需要支付运费900元。(Ⅰ)求该厂每隔多少天购买一次面粉,才能使平均每天支付的总费用最少?最少费用为多少?(Ⅱ)某提供面粉的公司规定:当一次购买面粉不少于120吨时,价格可享受9.5折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
(本小题满分16分)经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元. (1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式; (2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?
(本小题满分14分)如图,在平面直角坐标系xOy中,椭圆C的中心在坐标原点O,右焦点为F.若C的右准线l的方程为x=4,离心率e=. (1)求椭圆C的标准方程; (2)设点P为直线l上一动点,且在x轴上方.圆M经过O、F、P三点,求当圆心M到x轴的距离最小时圆M的方程.
(本小题满分14分)如图,在直三棱柱ABC-A1B1C1中,点D、E分别在边BC、 B1C1上,CD=B1E=AC,ÐACD=60°. 求证:(1)BE∥平面AC1D; (2)平面ADC1⊥平面BCC1B1.
(本小题满分14分)已知函数f(x)=2sinxcosx-2sin2x. (1)求函数f(x)的最小正周期; (2)求函数f(x)在区间[-,]上的最大值和最小值.
已知. (1)时,求的极值 (2)当时,讨论的单调性。 (3)证明:(,,其中无理数)