某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为3200元,面粉的保管等其它费用为平均每吨每天3元,购买面粉每次需要支付运费900元。(Ⅰ)求该厂每隔多少天购买一次面粉,才能使平均每天支付的总费用最少?最少费用为多少?(Ⅱ)某提供面粉的公司规定:当一次购买面粉不少于120吨时,价格可享受9.5折优惠,问该厂是否考虑利用此优惠条件?请说明理由。
如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为. (Ⅰ)当直线平分线段时,求的值; (Ⅱ)当时,求点到直线的距离; (Ⅲ)对任意,求证:.
定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直. (Ⅰ)求函数的解析式; (Ⅱ)设,若存在使得,求实数的取值范围.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ)求的值; (Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
如图,在直三棱柱中,,,是的中点. (Ⅰ)求证: 平面; (Ⅱ)求二面角的余弦值.
一个盒子中装有分别标有数字1、2、3、4的4个大小、形状完全相同的小球,现从中有放回地随机抽取2个小球,抽取的球的编号分别记为、,记. (Ⅰ)求取最大值的概率; (Ⅱ)求的分布列及数学期望.