某工厂生产一种机器的固定成本为5000元,且每生产100部,需要增加投入2500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部。已知年销售收入为,其中x是产品售出的数量。(1)若x为年产量,y 表示年利润,求的表达式。(年利润=年销售收入—投资成本(包括固定成本))(2)当年产量为何值时,工厂的年利润最大,其最大值是多少?
求由约束条件确定的平面区域的面积S和周长c.
设同时满足条件:①;②(,是与无关的常数)的无穷数列叫“嘉文”数列.已知数列的前项和满足: (为常数,且,). (Ⅰ)求的通项公式; (Ⅱ)设,若数列为等比数列,求的值,并证明此时为“嘉文”数列.
已知函数定义在区间上,,且当时, 恒有.又数列满足. (1)证明:在上是奇函数; (2)求的表达式; (3)设为数列的前项和,若对恒成立,求的最小值.
已知集合,集合 (1)求集合; (2)若,求的取值范围.
本公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?