(文)每次抛掷一枚骰子(六个面上分别标以数字(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率;(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。
一个袋子里装有7个球,其中有红球4个, 编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同). (Ⅰ)求取出的4个球中, 含有编号为3的球的概率;(Ⅱ)在取出的4个球中, 红球编号的最大值设为X,求随机变量X的分布列和数学期望.
已知向量,设函数(1)求在区间上的零点;(2)在中,角的对边分别是,且满足,求的取值范围.
求下列不等式的解集(Ⅰ)(Ⅱ)
已知曲线的参数方程为(为参数),曲线的极坐标方程. (Ⅰ)将曲线的参数方程化为普通方程,将曲线的极坐标方程化为直角坐标方程;(Ⅱ)曲线,是否相交,若相交请求出公共弦的长,若不相交,请说明理由.
已知函数(Ⅰ) 求函数的单调区间; (Ⅱ) 当时,求函数在上的最小值.