已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=(1)求椭圆C的方程;(2)设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.①当直线OG的倾斜角为60°时,求△GOH的面积;②是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
如图,四棱锥的底面是平行四边形,,,面,设为中点,点在线段上且. (1)求证:平面; (2)设二面角的大小为,若,求的长.
某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有两条巷道通往作业区(如下图),巷道有三个易堵塞点,各点被堵塞的概率都是;巷道有两个易堵塞点,被堵塞的概率分别为. (1)求巷道中,三个易堵塞点最多有一个被堵塞的概率; (2)若巷道中堵塞点个数为,求的分布列及数学期望,并按照"平均堵塞点少的巷道是较好的抢险路线"的标准,请你帮助救援队选择一条抢险路线,并说明理由.
凸四边形中,其中为定点,为动点, 满足. (1)写出与的关系式; (2)设的面积分别为和,求的最大值。
已知函数 (1)当a=1时,解不等式 (2)若存在成立,求a的取值范围.
在极坐标系中,曲线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数) (1)写出直线l和曲线C的普通方程; (2)设直线l和曲线C交于A,B两点,定点P(—2,—3),求|PA|·|PB|的值.