甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:(1)人都射中目标的概率;(2)人中恰有人射中目标的概率;(3)人至少有人射中目标的概率;(4)人至多有人射中目标的概率?
若向量,其中,记函数,若函数的图像与直线(为常数)相切,并且切点的横坐标依次成公差为的等差数列。(1)求的表达式及的值;(2)将函数的图像向左平移,得到的图像,当时,的交点横坐标成等比数列,求钝角的值。
(本题满分14分)在中,分别是角,,的对边,且.(I)若函数求的单调增区间;(II)若,求面积的最大值.
( 本题满分14分)已知函数对任意实数均有,其中常数k为负数,且在区间上有表达式(1)求的值;(2)写出在上的表达式,并讨论函数在上的单调性.
(本题满分14分)设函数的定义域为,记函数的最大值为.(1)求的解析式;(2)已知试求实数的取值范围.
( 本题满分14分) 提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当2时,车流速度v是车流密度x的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时).