已知函数.(1)当时,求的值域;(2)当,时,函数的图象关于对称,求函数的对称轴;(3)若图象上有一个最低点,如果图象上每点纵坐标不变,横坐标缩短到原来的倍,然后向左平移1个单位可得的图象,又知的所有正根从小到大依次为,,…,…且,求的解析式.
用总长的钢条做一个长方体容器的框架.如果所做容器的低面的一边长比另以一边长多那么高是多少时容器的容积最大,并求出它的最大容积.
求由与直线所围成图形的面积
已知复数满足,且为纯虚数,求证:为实数
若,观察下列不等式:,,…,请你猜测将满足的不等式,并用数学归纳法加以证明。
已知函数,。 (1)若,且函数存在单调递减区间,求的取值范围; (2)当时,求函数的取值范围。