已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;(2)当=λ,求λ的最大值.
已知函数,其中为实常数. (Ⅰ)判断在上的单调性; (Ⅱ)若存在,使不等式成立,求的取值范围.
已知数列满足下列条件: (Ⅰ)求的通项公式; (Ⅱ)设的前项和为,求证:对任意正整数,均有
如图,分别是椭圆的左、右焦点,且焦距为,动弦平行于轴,且 (Ⅰ)求椭圆的方程; (Ⅱ)若点是椭圆上异于点的任意一点,且直线分别与轴交于点,若的斜率分别为,求的取值范围.
如图,在三棱锥中,平面,,,. (Ⅰ)平面平面; (Ⅱ)为的延长线上的一点.若二面角的大小为,求的长.
在中,内角所对的边分别为已知, (Ⅰ)求角的取值范围; (Ⅱ)若的面积,为钝角,求角的大小.