已知椭圆C的方程为=1(a>b>0),双曲线=1的两条渐近线为l1、l2,过椭圆C的右焦点F作直线l,使l⊥l1.又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A、B(如图).(1)当l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程;(2)当=λ,求λ的最大值.
(本小题满分12分)设函数 (1)若, ①求的值; ②存在使得不等式成立,求的最小值; (2)当上是单调函数,求的取值范围。 (参考数据
(本小题满分12分)已知函数. (1)若曲线在点处的切线与直线垂直,求函数的单调区间; (2)记.当时,函数在区间上有两个零点,求实数的取值范围.
(本小题满分12分) 某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用 (2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
(本小题满分12分) 给定两个命题::对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围.
(本小题满分12分) 设二次函数在区间上的最大值、最小值分别是M、m,集合. (1)若,且,求M和m的值; (2)若,且,记,求的最小值.