(本小题满分12分)从集合的所有非空子集中,等可能地取出一个.(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;(2)记所取出的非空子集的元素个数为,求的分布列和数学期望E.
选修4-1:几何证明选讲 如图,正方形ABCD边长为2,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E. (1)求证:AE=EB; (2)求的值.
已知函数. (1)若x=2是函数f(x)的极值点,求曲线y=f(x)在点(1,f(1))处的切线方程; (2)若函数f(x)在上为单调增函数,求a的取值范围; (3)设m,n为正实数,且m>n,求证:.
已知A、B分别是椭圆的左右顶点,右焦点与抛物线的焦点F重合. (1)求椭圆C的方程; (2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.
如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,,凸多面体ABCED的体积为,F为BC的中点. (1)求证:AF∥平面BDE; (2)求证:平面BDE⊥平面BCE.
某同学用“五点法”画函数在某一个周期的图象时,列表并填入了部分数据,如下表: (1)请求出上表中的,,,并直接写出函数f(x)的解析式; (2)将f(x)的图象沿x轴向右平移个单位得到函数g(x),若函数g(x)在(其中)上的值域为,且此时其图象的最高点和最低点分别为P,Q,求与夹角的大小.