在平面直角坐标系xOy中,已知点A(-1,1),P是动点,且△POA的三边所在直线的斜率满足kOP+kOA=kPA.(1)求点P的轨迹C的方程;(2)若Q是轨迹C上异于点P的一个点,且=λ,直线OP与QA交于点M,问:是否存在点P,使得△PQA和△PAM的面积满足S△PQA=2S△PAM?若存在,求出点P的坐标;若不存在,说明理由.
(本小题满分14分) 已知函数f(x)=x-ax + (a-1),. (I)讨论函数的单调性; (II)若,数列满足. (1)若首项,证明数列为递增数列; (2)若首项为正整数,数列递增,求首项的最小值.
(本小题满分12分) 有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用) (I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少? (II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
(本小题满分12分)设点P的坐标为,直线l的方程为.请写出点P到直线l的距离,并加以证明.
如图,FD垂直于矩形ABCD所在平面,CE//DF,. (Ⅰ)求证:BE//平面ADF; (Ⅱ)若矩形ABCD的一个边AB =,EF =,则另一边BC的长为何值时,二面角B-EF-D的大小为45°?
(本小题满分12分) 三角形的三个内角A、B、C所对边的长分别为、、,设向量,若//. (I)求角B的大小; (II)求的取值范围.