如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点 ( 1 , 2 2 ) ,离心率为 2 2 ,左、右焦点分别为 F 1 , F 2 .点 P 为直线 l : x + y = 2 上且不在 x 轴上的任意一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D , O 为坐标原点.
(I)求椭圆的标准方程; (II)设直线 P F 1 、 P F 2 的斜线分别为 k 1 , k 2 . (i)证明: 1 k 1 - 3 k 2 = 2 ; (ii)问直线 l 上是否存在点 P ,使得直线 O A , O B , O C , O D 的斜率 k O A , k O B , k O C , k O D 满足 k O A + k O B + k O C + k O D = 0 ?若存在,求出所有满足条件的点 P 的坐标;若不存在,说明理由.
已知数列的通项公式为.(1)试问是否是数列中的项?(2)若,求.
解关于的不等式:.
已知数列,且,若构成公差为的等差数列.(1)试用和表示;(2)设是满足的整数,则当时,数列中最小项是第几项?
动点从原点出发,沿轴正向移动距离到达,再沿轴正向移动距离点,到达点,再沿轴正向移动到达点,依次类推无限进行每转1次距离缩小一半.(1)求点行进路线的极限;(2)动点与坐标平面上哪1点无限接近?
指出函数的单调区间.