如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点 ( 1 , 2 2 ) ,离心率为 2 2 ,左、右焦点分别为 F 1 , F 2 .点 P 为直线 l : x + y = 2 上且不在 x 轴上的任意一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D , O 为坐标原点.
(I)求椭圆的标准方程; (II)设直线 P F 1 、 P F 2 的斜线分别为 k 1 , k 2 . (i)证明: 1 k 1 - 3 k 2 = 2 ; (ii)问直线 l 上是否存在点 P ,使得直线 O A , O B , O C , O D 的斜率 k O A , k O B , k O C , k O D 满足 k O A + k O B + k O C + k O D = 0 ?若存在,求出所有满足条件的点 P 的坐标;若不存在,说明理由.
某城市2001年底人口为500万,人均住房面积为6 m2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m2,才能使2020年底该城市人均住房面积至少为24m2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).
已知:等差数列{}中,=14,前10项和.(1)求;(2)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.
在等比数列中,,公比,前项和,求首项和项数
)已知x、y满足,求的最值
已知直线经过点P(1,1),。(1)写出直线的参数方程;(2)设与圆相交于两点A、B,求点P到A,B两点的距离之积