如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 过点 ( 1 , 2 2 ) ,离心率为 2 2 ,左、右焦点分别为 F 1 , F 2 .点 P 为直线 l : x + y = 2 上且不在 x 轴上的任意一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D , O 为坐标原点.
(I)求椭圆的标准方程; (II)设直线 P F 1 、 P F 2 的斜线分别为 k 1 , k 2 . (i)证明: 1 k 1 - 3 k 2 = 2 ; (ii)问直线 l 上是否存在点 P ,使得直线 O A , O B , O C , O D 的斜率 k O A , k O B , k O C , k O D 满足 k O A + k O B + k O C + k O D = 0 ?若存在,求出所有满足条件的点 P 的坐标;若不存在,说明理由.
(本小题满分12分)如图,直三棱柱中,D、E分别是AB、的中点. (Ⅰ)证明:平面; (Ⅱ)设,,求四棱锥的体积.
设函数的最小值为a. (Ⅰ)求a; (Ⅱ)已知两个正数m,n满足,求的最小值.
如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相交于点,为上一点,且. (Ⅰ)求证:; (Ⅱ)若,求的长.
(本小题满分12分)已知函数. (Ⅰ)如果函数在上单调递减,求的取值范围; (Ⅱ)当时,讨论函数零点的个数.
(本小题满分12分)有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示: (Ⅰ)求频率分布直方图中的值; (Ⅱ)分别求出成绩落在中的学生人数; (Ⅲ)从成绩在的学生中任选2人,求所选学生的成绩都落在中的概率.