(本题12分)已知不等式的解集为;(1)求的值;(2)若不等式在上恒成立,求实数的最大值.
(本小题满分12分)如图,已知直线l:与抛物线C:交于A,B两点,为坐标原点,。(Ⅰ)求直线l和抛物线C的方程;(Ⅱ)抛物线上一动点P从A到B运动时,求△ABP面积最大值.
(本小题满分12分)聊城市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.(1)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;(2)在(1)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望.
(本小题满分12分)在△ABC中角A、B、C的对边分别为设向量(1)求的取值范围;(2)若试确定实数的取值范围.
(本小题满分12分)已知,其中是自然常数,(1)讨论时, 的单调性、极值;(2)求证:在(1)的条件下,;(3)是否存在实数,使的最小值是3,若存在,求出的值;若不存在,说明理由.
(本小题满分12分)如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE, AB=BC=CE=2CD=2,∠BCE=1200,F为AE中点。 (Ⅰ) 求证:平面ADE⊥平面ABE ; (Ⅱ)求二面角A—EB—D的大小的余弦值; (Ⅲ)求点F到平面BDE的距离.