如图1,已知抛物线的顶点为A(O,1),矩形CDEF的顶点C、F在抛物线上,D、E在轴上,CF交y轴于点B(0,2),且其面积为8.(1)求此抛物线的解析式;(2)如图2,若P点为抛物线上不同于A的一点,连结PB并延长交抛物线于点Q,过点P、Q分别作轴的垂线,垂足分别为S、R.①求证:PB=PS;②判断△SBR的形状;③试探索在线段SR上是否存在点M,使得以点P、S、M为顶点的三角形和以点Q、R、M为顶点的三角形相似,若存在,请找出M点的位置;若不存在,请说明理由.
在平面直角坐标系中,直线与轴,轴分别交于点,,抛物线经过点,将点向右平移5个单位长度,得到点.
(1)求点的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.
某年级共有300名学生.为了解该年级学生,两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.
.课程成绩的频数分布直方图如下(数据分成6组:,,,,,
.课程成绩在这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5
.,两门课程成绩的平均数、中位数、众数如下:
课程
平均数
中位数
众数
75.8
84.5
72.2
70
83
根据以上信息,回答下列问题:
(1)写出表中的值;
(2)在此次测试中,某学生的课程成绩为76分,课程成绩为71分,这名学生成绩排名更靠前的课程是 (填“”或“” ,理由是 ,
(3)假设该年级学生都参加此次测试,估计课程成绩超过75.8分的人数.
如图,是与弦所围成的图形的内部的一定点,是弦上一动点,连接并延长交于点,连接.已知,设,两点间的距离为,,两点间的距离为,,两点间的距离为.
小腾根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.
下面是小腾的探究过程,请补充完整:
(1)按照下表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值;
0
1
2
3
4
5
6
5.62
4.67
3.76
2.65
3.18
4.37
5.59
5.53
5.42
5.19
4.73
4.11
(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,,并画出函数,的图象;
(3)结合函数图象,解决问题:当为等腰三角形时,的长度约为 .
在平面直角坐标系中,函数的图象经过点,直线与图象交于点,与轴交于点.
(1)求的值;
(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
如图,是的直径,过外一点作的两条切线,,切点分别为,,连接,.
(1)求证:;
(2)连接,,若,,,求的长.