(本小题满分12分)(1)判断函数的奇偶性;(2)若,求a的取值范围.
在中学生综合素质评价的测评中,分“优、良、不及格”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: (Ⅰ)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为良的概率; (Ⅱ)由表中统计数据填写下边列联表,并判断是否有的把握认为“测评结果优秀与性别有关”.
参考数据与公式: ,其中. 临界值表:
已知侧棱垂直于底面的三棱柱的所有棱长都相等,为棱中点.(Ⅰ)证明:;(Ⅱ)在线段上是否存在点,使∥平面,若存在,确定点的位置;若不存在,请说明理由.
(本题满12分)已知A、B、C为的三个内角且向量共线。(Ⅰ)求角C的大小;(Ⅱ)若的外接圆面积为,求三角形面积最大值.
关于的不等式.(Ⅰ)当时,解此不等式;(Ⅱ)设函数,当为何值时,恒成立?
已知曲线的极坐标方程为,曲线的参数方程为(为参数).(Ⅰ)求曲线的直角坐标方程和曲线的方程为普通方程;(Ⅱ)若上的点的极坐标为,为上的动点,求中点到直线(为参数)距离的最小值.