某生态示范园要对1号、2号、3号、4号四个新品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推广.通过实验得知:3号果树幼苗成活率为89.6%,把实验数据绘制成下列两幅统计图(部分信息未给出).(1)实验所用的2号果树幼苗的数量是_______株;(2)求出3号果树幼苗的成活数,并把图2的统计图补充完整;(3)你认为应选哪一种果树幼苗进行推广?请通过计算说明理由.
将一根长为16厘米的细铁丝剪成两段,并把每段铁丝围成圆,设所得两圆半径分别为r和R,面积分别为S1和S2. ⑴ 求R与r的数量关系式,并写出r的取值范围; ⑵ 记S=S1+S2,求S关于r的函数关系式,并求出S的最小值.
如图,已知△ABC中,∠C=90°,点D在边AC上,∠BDC=45°,BD=10,AC=10,求∠A的度数.
计算:cos245º+tan60º·sin60º-sin30º.
在四边形ABCD中,对角线AC,BD交于点O,点P是在线段BC上任意一点(与点B不重合),∠BPE=∠BCA,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G. ⑴ 若ABCD为正方形, ① 如图⑴,当点P与点C重合时.△BOG是否可由△POE通过某种图形变换得到?证明你的结论; ② 结合图⑵求的值; ⑵ 如图⑶,若ABCD为菱形,记∠BCA=,请探究并直接写出的值.(用含的式子表示)
如图,在平面直角坐标系中,直线l:交y轴于点A.抛物线的图象过点E(-1,0),并与直线l相交于A、B两点. ⑴ 求抛物线的解析式; ⑵ 设点P是抛物线的对称轴上的一个动点,当△PAE的周长最小时,求点P的坐标; ⑶ 在x轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.