已知:抛物线经过坐标原点.(1)求抛物线的解析式和顶点B的坐标;(2)设点A是抛物线与轴的另一个交点,试在轴上确定一点P,使PA+PB最短,并求出点P的坐标;(3)过点A作AC∥BP交轴于点C,求到直线AP、AC、CP距离相等的点的坐标.
如图,在直角坐标系,点P的坐标为(-6,8)将OP绕点O顺时针旋转90°得到线段OP′. (1)在图中画出OP′; (2)点P′的坐标为; (3)求线段PP′的长度.
在一个不透明的口袋中装有3个完全相同的小球,把它们分别标号为1,2,3,随机地摸出一个小球然后放回,再随机地摸出一个小球. (1)两次摸出的小球的标号不同的概率为; (2)求两次摸出小球的标号之积是3的倍数的概率(采用树形图或列表法).
解方程 (1) (2)
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连结PC,过点P作PE⊥PC交AB于E. (1)证明△PAE∽△CDP; (2)当点P在AD上运动时,对应的点E也随之在AB上运动,设AP=x,BE=y,求y与x的函数关系式及y的取值范围; (3)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由.
如图,P1是反比例函数在第一象限图象上的一点,已知△P1O A1为等边三角形,点A1的坐标为(2,0). (1)直接写出点P1的坐标; (2)求此反比例函数的解析式; (3)若△P2A1A2为等边三角形,求点A2的坐标.