(本小题满分12分)已知方向向量为v=(1,)的直线l过点(0,-2)和椭圆C:的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足cot∠MON ≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.
(本小题满分13分) 已知函数,其中是常数. (Ⅰ)当时,求曲线在点处的切线方程; (Ⅱ)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.
(本小题满分14分) 在四棱锥中,底面是直角梯形,∥,,,平面平面. (Ⅰ)求证:平面; (Ⅱ)求平面和平面所成二面角(小于)的大小; (Ⅲ)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.
(本小题满分13分) 为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛. (Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率; (Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
(本小题满分13分) 在中,角,,所对的边分别为,,,,. (Ⅰ)求及的值; (Ⅱ)若,求的面积.