(本小题满分13分)为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
(本小题满分12分) 设函数(),已知数列是公差为2的等差数列,且. (Ⅰ)求数列的通项公式; (Ⅱ)当时,求证:.
(本小题满分12分) 已知函数(R). (1)求的最小正周期和最大值; (2)若为锐角,且,求的值.
已知函数. (1)求函数的定义域; (2)判断的奇偶性并证明你的结论; (3)试讨论的单调性.
已知函数的定义域为,对于任意的,都有,且当时,,若. (1)求证:为奇函数; (2)求证:是上的减函数; (3)求函数在区间上的值域.
已知为定义在上的奇函数,当时,; (1)求在上的解析式; (2)试判断函数在区间上的单调性,并给出证明.