叙述并证明余弦定理.
(本小题满分14分)设数列满足,,.数列满足,是非零整数,且对任意的正整数和自然数,都有.(1)求数列和的通项公式;(2)记,求数列的前项和.
(本小题满分13分) 某初级中学共有学生2000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求的值; (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知,,求初三年级中女生比男生多的概率.
(本小题满分13分)已知函数,的最大值是1,其图像经过点.(1)求的解析式;(2)已知,且,,求的值.
已知 △ A B C 的角 A , B , C 所对的边分别是 a , b , c ,设向量 m → = ( a , b ) , n → = ( sin B , sin A ) , p → = ( b - 2 , a - 2 ) . (1)若 m → / / n → ,求证: △ A B C 为等腰三角形; (2)若 m → ⊥ p → ,边长 c = 2 ,角 C = π 3 ,求 △ A B C 的面积.
已知 { a n } 是公差为 d 的等差数列, { b n } 是公比为 q 的等比数列. (1)若 a n = 3 n + 1 ,是否存在 m , k ∈ N + ,有 a m + a m + 1 = a k 说明理由; (2)找出所有数列 { a n } 和 { b n } ,使对一切 n ∈ N + , a n - 1 a n = b n ,并说明理由; (3)若 a 1 = 5 , d = 4 , b 1 = q = 3 试确定所有的 p ,使数列 { a n } 中存在某个连续 p 项的和是数列 { b n } 中的一项,请证明.