已知 { a n } 是公差为 d 的等差数列, { b n } 是公比为 q 的等比数列. (1)若 a n = 3 n + 1 ,是否存在 m , k ∈ N + ,有 a m + a m + 1 = a k 说明理由; (2)找出所有数列 { a n } 和 { b n } ,使对一切 n ∈ N + , a n - 1 a n = b n ,并说明理由; (3)若 a 1 = 5 , d = 4 , b 1 = q = 3 试确定所有的 p ,使数列 { a n } 中存在某个连续 p 项的和是数列 { b n } 中的一项,请证明.
已知展开式的二项式系数和为512, 且 (1)求的值; (2)求的值; (3)求被6整除的余数.
某同学练习投篮,已知他每次投篮命中率为, (1)求在他第三次投篮后,首次把篮球投入篮框内的概率; (2)若想使他投入篮球的概率达到0.99,则他至少需投多少次?(lg2=0.3)
在直三棱柱中,,直线与平面成角; (1)求证:平面平面; (2)求二面角的正弦值.
在上海世界博览会开展期间,计划选派部分高二学生参加宣传活动,报名参加的学生需进行测试,共设4道选择题,规定必须答完所有题,且答对一题得1分,答错一题扣1分,至少得2分才能入选成为宣传员;甲乙丙三名同学报名参加测试,他们答对每个题的概率都为,且每个人答题相互不受影响. (1)用随机变量表示能够成为宣传员的人数,求的数学期望与方差; (2)若学生甲得分的数值为随机变量,求所得分数的分布列和数学期望.
如图,在四棱锥中,底面为菱形,, , ,为的中点,为的中点 (1)证明:直线; (2)求异面直线与所成角的大小; (3)求点到平面的距离.